35 research outputs found

    Stabilization of systems with asynchronous sensors and controllers

    Full text link
    We study the stabilization of networked control systems with asynchronous sensors and controllers. Offsets between the sensor and controller clocks are unknown and modeled as parametric uncertainty. First we consider multi-input linear systems and provide a sufficient condition for the existence of linear time-invariant controllers that are capable of stabilizing the closed-loop system for every clock offset in a given range of admissible values. For first-order systems, we next obtain the maximum length of the offset range for which the system can be stabilized by a single controller. Finally, this bound is compared with the offset bounds that would be allowed if we restricted our attention to static output feedback controllers.Comment: 32 pages, 6 figures. This paper was partially presented at the 2015 American Control Conference, July 1-3, 2015, the US

    Hide-and-Seek with Directional Sensing

    Full text link
    We consider a game played between a hider, who hides a static object in one of several possible positions in a bounded planar region, and a searcher, who wishes to reach the object by querying sensors placed in the plane. The searcher is a mobile agent, and whenever it physically visits a sensor, the sensor returns a random direction, corresponding to a half-plane in which the hidden object is located. We first present a novel search heuristic and characterize bounds on the expected distance covered before reaching the object. Next, we model this game as a large-dimensional zero-sum dynamic game and we apply a recently introduced randomized sampling technique that provides a probabilistic level of security to the hider. We observe that, when the randomized sampling approach is only allowed to select a very small number of samples, the cost of the heuristic is comparable to the security level provided by the randomized procedure. However, as we allow the number of samples to increase, the randomized procedure provides a higher probabilistic security level.Comment: A short version of this paper (without proofs) will be presented at the 18th IFAC World Congress (IFAC 2011), Milan (Italy), August 28-September 2, 201

    Data Transmission Over Networks for Estimation and Control

    Get PDF
    We consider the problem of controlling a linear time invariant process when the controller is located at a location remote from where the sensor measurements are being generated. The communication from the sensor to the controller is supported by a communication network with arbitrary topology composed of analog erasure channels. Using a separation principle, we prove that the optimal linear-quadratic-Gaussian (LQG) controller consists of an LQ optimal regulator along with an estimator that estimates the state of the process across the communication network. We then determine the optimal information processing strategy that should be followed by each node in the network so that the estimator is able to compute the best possible estimate in the minimum mean squared error sense. The algorithm is optimal for any packet-dropping process and at every time step, even though it is recursive and hence requires a constant amount of memory, processing and transmission at every node in the network per time step. For the case when the packet drop processes are memoryless and independent across links, we analyze the stability properties and the performance of the closed loop system. The algorithm is an attempt to escape the viewpoint of treating a network of communication links as a single end-to-end link with the probability of successful transmission determined by some measure of the reliability of the network

    A secure state estimation algorithm for nonlinear systems under sensor attacks

    Full text link
    The state estimation of continuous-time nonlinear systems in which a subset of sensor outputs can be maliciously controlled through injecting a potentially unbounded additive signal is considered in this paper. Analogous to our earlier work for continuous-time linear systems in \cite{chong2015observability}, we term the convergence of the estimates to the true states in the presence of sensor attacks as `observability under MM attacks', where MM refers to the number of sensors which the attacker has access to. Unlike the linear case, we only provide a sufficient condition such that a nonlinear system is observable under MM attacks. The condition requires the existence of asymptotic observers which are robust with respect to the attack signals in an input-to-state stable sense. We show that an algorithm to choose a compatible state estimate from the state estimates generated by the bank of observers achieves asymptotic state reconstruction. We also provide a constructive method for a class of nonlinear systems to design state observers which have the desirable robustness property. The relevance of this study is illustrated on monitoring the safe operation of a power distribution network.Comment: This paper has been accepted for publication at the 59th IEEE Conference on Decision and Control, 202

    Distributed Optimal Estimation from Relative Measurements for Localization and Time Synchronization

    Full text link
    We consider the problem of estimating vector-valued variables from noisy “relative” measurements. The measurement model can be expressed in terms of a graph, whose nodes correspond to the variables being estimated and the edges to noisy measurements of the difference between the two variables. This type of measurement model appears in several sensor network problems, such as sensor localization and time synchronization. We consider the optimal estimate for the unknown variables obtained by applying the classical Best Linear Unbiased Estimator, which achieves the minimum variance among all linear unbiased estimators.We propose a new algorithm to compute the optimal estimate in an iterative manner, the Overlapping Subgraph Estimator algorithm. The algorithm is distributed, asynchronous, robust to temporary communication failures, and is guaranteed to converges to the optimal estimate even with temporary communication failures. Simulations for a realistic example show that the algorithm can reduce energy consumption by a factor of two compared to previous algorithms, while achieving the same accuracy
    corecore